Research on target detection in complex road scenes based on receptive field enhancement
DOI:
CSTR:
Author:
Affiliation:

1.Jiangsu Province Engineering Research Center of Integrated Circuit Reliability Technology and Testing System, Wuxi University, Wuxi 214105, China; 2.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Clc Number:

TP391.4; TN914

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To address the issue of missed and false detections for distant small objects and occluded objects in current road target detection algorithms in autonomous driving scenarios, a road target detection algorithm based on an improved YOLOv8n is proposed. In terms of feature extraction, the Receptive-Field Attention Convolution is lightweightly improved, and the C2f module is reconstructed to solve the problem of non-shared parameters in convolution calculations, enabling the network to effectively capture critical information. Then, a lightweight point sampling operator is introduced to reduce the loss of feature details during the upsampling process, better preserving image detail information. In terms of feature fusion, a multi-scale feature fusion network is designed to enhance small target feature information and enrich the bidirectional fusion of features at different scales. Simultaneously, a normalization attention mechanism is used to suppress irrelevant background information interference, improving the model′s anti-interference capability. Experimental results show that the proposed improved algorithm achieves detection accuracies of 92.6% and 78.7% on the KITTI dataset and the Udacity dataset, respectively, representing improvements of 2.1% and 1.6% compared to the original algorithm. The model still meets lightweight requirements and enhances adaptability to complex road scenes to a certain extent.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: November 07,2024
  • Published:
Article QR Code