模糊神经网络在城市轨道交通行车组织管理中的应用
DOI:
CSTR:
作者:
作者单位:

西安铁路职业技术学院 陕西西安 710014

作者简介:

通讯作者:

中图分类号:

TM425

基金项目:


Application of Fuzzy Neural Network in Operation Organization and Management of Urban Rail Transit
Author:
Affiliation:

Xi’an Railway Vocational and Technical College,Xi’an,710014, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究一种可有效促进城市轨道交通行车组织管理效能的模糊神经网络算法。利用超限学习机模块对站点客流量进行初步卷积,使用卷积神经网络将考察线路内的各站点客流量数据进行汇总,同时构建其他线路的参照数据,使用二值化模块形成放行信号灯建议数据。应用该系统后,客流峰值车辆满载率显著下降,客流估值车辆满载率显著提升,客流估值发车间隙显著增加但并未影响到旅客的站内滞留时间。认为该算法可以有效提升城市轨道交通的运行效率和经济效益。

    Abstract:

    This paper studies a fuzzy neural network algorithm which can effectively promote the efficiency of urban rail transit operation organization and management. The overrun learning machine module is used to convolute the passenger flow of each station, the convolution neural network is used to summarize the passenger flow data of each station in the inspection line, and the reference data of other lines is constructed, and the binary module is used to form the release signal light recommendation data. After the application of the system, the peak vehicle load rate of passenger flow is significantly reduced, the estimated vehicle load rate of passenger flow is significantly increased, and the departure gap of passenger flow is significantly increased, but it does not affect the residence time of passengers in the station. It is considered that the algorithm can effectively improve the operation efficiency and economic benefits of urban rail transit.

    参考文献
    相似文献
    引证文献
引用本文

王 静.模糊神经网络在城市轨道交通行车组织管理中的应用[J].电子测量技术,2021,44(5):118-122

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码