时频分析与VGG19迁移学习的轴承故障检测
DOI:
CSTR:
作者:
作者单位:

昆明理工大学 信息工程与自动化学院 昆明 650500

作者简介:

通讯作者:

中图分类号:

TH133.3

基金项目:

国家自然科学基金项目(61271007)资助


Time frequency analysis and bearing fault dectection of VGG19 transfer learning
Author:
Affiliation:

Department of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决轴承故障诊断依赖专家经验的人工特征提取问题,本文提出时频分析与VGG19网络迁移学习的故障诊断方法。首先利用时频分析的方法将轴承的正常状态、内圈故障、外圈故障和滚动体故障的一维数据转换为时频样本图,同时也将上述数据生成谱峭度图;其次对VGG19网络模型中的全连接层进行网络替换并Fine-tuning;最后通过网络调参实现卷积神经迁移学习网络对轴承故障的识别分类诊断。结果表明,在实验中滚动轴承故障诊断的时频样本图分类准确率高于谱峭度图样本分类的准确率高达5.42%,验证了时频分析与VGG19迁移学习在信号处理方面应用的有效性;另外,迁移学习可以解决小样本的故障诊断问题。

    Abstract:

    In order to solve the problem of artificial characteristics of bearing fault diagnosis, this paper puts forward the fault diagnosis method of the time frequency analysis and VGG19 network migration learning. First, the normal state, the internal ring fault, the outer ring fault and the sliding fault of the rolling body are converted to the frequency sample diagram, and then the spectrum kurtosis graph is generated from the above data. Secondly, the full connection layer in the VGG19 network model is replaced and fine-tuning. Finally, the convolutional neural transfer learning network is used to recognize and classify bearing faults through network parameter tuning.The results show that the classification accuracy of time-frequency sample graph for rolling bearing fault diagnosis in the experiment is 5.42% higher than that of spectral kurtosis graph, which verifies the validity of the application of time-frequency analysis and VGG19 transfer learning in signal processing.In addition,Transfer learning can solve the problem of fault diagnosis of small samples.

    参考文献
    相似文献
    引证文献
引用本文

李传鑫,刘增力.时频分析与VGG19迁移学习的轴承故障检测[J].电子测量技术,2021,44(5):161-165

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码