基于精英反向学习和Lévy飞行的鲸鱼优化算法
DOI:
CSTR:
作者:
作者单位:

1.安徽新华学院 电子工程学院,合肥 230088; 2.皖西学院 电子与信息工程学院,六安 237012

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

安徽高校自然科学基金 (KJ2018A0417)、安徽省质量工程(2018ylzy073、2020jyxm2146)资助


Whale optimization algorithm based on elite reverse learning and Lévy flight
Author:
Affiliation:

1.College of Electronic Engineering, Anhui Xinhua University, Hefei 230088, China; 2. College of Information Engineering, West Anhui University, Lu’an 237012, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对鲸鱼优化算法在优化复杂工程时易陷入局部最优、收敛精度低等问题,提出一种基于精英反向学习和Lévy飞行的鲸鱼优化算法(ELWOA),该算法首先通过精英反向学习优化初始化种群,提高种群的多样性;然后增加自适应权重因子,有利于平衡算法的全局和局部搜索能力;最后将Lévy飞行策略应用到鲸鱼优化算法,在最优位置附近进行小范围搜索,有利于算法后期跳出局部最优,提升算法的局部搜索能力。通过对多个测试函数的仿真优化分析,结果表明,ELWOA算法比WOA、MWOA算法具有较快收敛速度和较好的收敛精度。

    Abstract:

    Aiming at the problems that the whale optimization algorithm is easy to fall into local optimum and low convergence accuracy when optimizing complex engineering, a whale optimization algorithm (ELWOA) based on elite backward learning and Lévy flight is proposed, which first optimizes the initialized population through elite backward learning to improve the diversity of the population; then increases the adaptive weight factor, which is beneficial to balance the global and local search ability of the algorithm; finally, the Lévy flight strategy is applied to the whale optimization algorithm to conduct a small search near the optimal position, which is beneficial to the algorithm to jump out of the local optimum later and improve the local search ability of the algorithm. Through the simulation and optimization analysis of several test functions, the results show that the ELWOA algorithm has faster convergence speed and better convergence accuracy than the WOA and MWOA algorithms.

    参考文献
    相似文献
    引证文献
引用本文

孟宪猛,蔡翠翠.基于精英反向学习和Lévy飞行的鲸鱼优化算法[J].电子测量技术,2021,44(20):82-87

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码