基于偏振特征与强度信息融合的工件目标检测
DOI:
CSTR:
作者:
作者单位:

1.山东省水利勘测设计院 济南 250013; 2.河海大学信息科学与工程学院 常州 213000

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:

济南市数字孪生与智慧水利重点实验室开放研究基金(37H2022KY040116)项目资助


Workpiece target detection based on fusion of polarization features and intensity information
Author:
Affiliation:

1.Shandong Water Conservancy Survey and Design Institute, Jinan 250013, China; 2.College of Information Science and Engineering, Hohai University, Changzhou 213000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前工件尺寸测量在工件关键测量点的准确提取阶段存在的问题,因此本文提出一种基于偏振特征与强度信息融合的工件目标检测方法。在工件强度图像的基础上引入偏振特征,建立强度信息与偏振特征差异化式高效交互的双流网络模型,以实现更高效的偏振特征和强度信息融合。为验证算法的效果,本文建立了偏振图像工件目标显著性检测数据集。在此数据集上,本文提出的算法在精确度Precision、max-F和相似性值S-measure三个指标上和视觉结果均在对比算法中达到了最优结果,充分表明了本文算法出色的工件目标检测性能,具有极佳的工件目标检测效果。

    Abstract:

    In response to the current problems of dimensional measurement of workpieces at the stage of accurate extraction of key measurement points of the workpieces, this paper proposes a workpiece target detection method based on the fusion of polarization features and intensity information. The polarization features are introduced on the basis of the workpiece intensity image, and a dual-stream network model with differentiated and efficient interaction between intensity information and polarization features is established to achieve a more efficient fusion of polarization features and intensity information. To validate the algorithm′s effectiveness, we have established a dataset for detecting the saliency of workpiece targets in polarization images. On this dataset, the proposed algorithm outperforms comparison algorithms in terms of Precision, max-F, S-measure, and visual results, underscoring its exceptional performance in workpiece target detection and its outstanding results in workpiece target detection.

    参考文献
    相似文献
    引证文献
引用本文

杨长虎,袁东,张健,余洋洋,张志良.基于偏振特征与强度信息融合的工件目标检测[J].电子测量技术,2023,46(24):188-196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码